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BAMboozle removes genetic variation from human
sequence data for open data sharing
Christoph Ziegenhain1 & Rickard Sandberg 1✉

The risks associated with re-identification of human genetic data are severely limiting open

data sharing in life sciences, even in studies where donor-related genetic variant information

is not of primary interest. Here, we developed BAMboozle, a versatile tool to eliminate critical

types of sensitive genetic information in human sequence data by reverting aligned reads to

the genome reference sequence. Applying BAMboozle to functional genomics data, such as

single-cell RNA-seq (scRNA-seq) and scATAC-seq datasets, confirmed the removal of

donor-related single nucleotide polymorphisms (SNPs) and indels in a manner that did not

disclose the altered positions. Importantly, BAMboozle only removes the genetic sequence

variants of the sample (i.e., donor) while preserving other important aspects of the raw

sequence data. For example, BAMboozled scRNA-seq data contained accurate cell-type

associated gene expression signatures, splice kinetic information, and can be used for

methods benchmarking. Altogether, BAMboozle efficiently removes genetic variation in

aligned sequence data, which represents a step forward towards open data sharing in many

areas of genomics where the genetic variant information is not of primary interest.
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Modern omics methods have transformed life science
research and especially sequencing-based approaches
have seen a rise in popularity. Sharing sequencing data

has been a major driver of innovation and has increased the pace
of development in life sciences1,2. Free access to raw sequencing
data is essential for research transparency and for large-scale
integration of published data. With the maturation of technolo-
gies like single-cell RNA sequencing (scRNA-seq)3, many fields
have progressed to broad applications in healthy and diseased
primary human samples.

However, sharing sequencing data generated from human
donors comes with ethical concerns relating to data privacy, since
the genetic variation that defines each of us can be used and
misused to uniquely identify human individuals. Pioneering
analyses have demonstrated the ability to infer identities from
variants such as single-nucleotide polymorphisms (SNPs)4 and
short-tandem repeats5. Sequencing data without donor informa-
tion becomes re-identifiable given a large enough reference
database6, and even when some of the variants are masked but
combined with other demographic information7. It is therefore
paramount to protect the study individuals’ identity and genetic
information, as reflected in recent legislation8. Accordingly,
human sequencing data are deposited in controlled-access repo-
sitories (e.g., dbGaP9 or EGA10), whereas alternative strategies,
such as blockchain encryption11 or masking algorithms12, have
yet to reach widespread adoption13. Controlled-access reposi-
tories are important for protecting sensitive genomic data by
allowing data sharing only with specific researchers who have
been granted access. However, the heavily increased barriers in
sharing sequencing data are severely limiting study transparency,
reproducibility, innovation, and development, especially as we
enter the age of personalized medicine.

Having access to the raw sequence data is important for most
re-analyses of published studies. Meta-studies that associate
specific human genetic variation to disease or traits critically rely
on the controlled access to human sequence variant data. How-
ever, re-analyses of published scRNA-seq data also benefit from
having the access to raw sequence data14,15, although not
necessarily needing genetic variant information. For example, the
integration of data from many studies (and individuals) improves
the derivation of cell-type and cell-state-specific gene expression
signatures16. In fact, many areas of functional genomics would
benefit from the ability to openly share raw sequence data that
were processed to remove the genetic variant information, while
preserving all other aspects of the aligned reads.

To address the current limitations to data sharing of human
sequencing data, we developed BAMboozle, a versatile and effi-
cient program that reverts aligned read sequences (in Binary
Sequencing Alignment Map (BAM) format) to the reference
genome to efficiently eliminate the genetic variant information in
raw sequence data. We demonstrate on single-cell genomics data
sets that BAMboozle accurately and efficiently removed genetic
variant information in sequence data, without sacrificing utility
for downstream analyses.

Results
Strategy for stripping human sequence data of genetic infor-
mation. To lower the barriers in sharing sequence data, we
propose, like others recently17, to remove information on genetic
variation that could be used to infer the identity from aligned
reads and compromises the privacy of the donor (Fig. 1a).
Genetic variation, including SNPs, indels, and short-tandem
repeats, is the main compromising information to remove in such
data. Provided that count data does not carry sufficient infor-
mation to allow the identification of individual patients, data

processed to accurately remove all genetic variant information
can—in principle—be shared openly according to the European
General Data Protection Regulation (GDPR), fitting the criteria
for “information which does not relate to an identified or iden-
tifiable natural person or to personal data rendered anonymous in
such a manner that the data subject is not or no longer
identifiable”18. If, however, it would turn out that count data does
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Fig. 1 Schematic overview of the BAMboozle procedure. a Sequenced
reads typically harbor identifying genetic variants that are deviating from the
reference genome. Data sanitation removes such variants by replacement
with the reference sequence. b Schematic representation of an aligned 100 bp
read (red) with an alternative allele at a single-nucleotide polymorphism
(SNP) position is corrected to the reference base in output read (blue). Raw
and corrected CIGAR (Compact Idiosyncratic Gapped Alignment Report)
strings (with operator descriptions below) are shown over reads, and raw and
corrected MD tags are shown to the right. c Aligned 100 bp read (red) with
donor-specific insertion (relative to reference), with information as in b. d
Aligned 100 bp read (red) with donor-specific deletion (relative to reference),
with information as in b. e Aligned 100 bp read pair sequence (paired-end
data) that was clipped at the 5’ end relative to reference. Note the correction
in alignment end position as a result of the removal of clipped positions. f
Spliced alignment that additionally contains an insertion not present in
reference. The spliced alignment information is preserved during the
sanitation of genetic variation. g Spliced alignment that additionally contains a
deletion not present in reference. The spliced alignment information is
preserved during the sanitation of genetic variation. CIGAR string operators:
M, alignment match; I, insertion; D, deletion; N, skipped in reference; S, soft
clipping; H, hard clipping; P, padding; =, sequence match; X, sequence
mismatch.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26152-8

2 NATURE COMMUNICATIONS | (2021) 12:6216 | https://doi.org/10.1038/s41467-021-26152-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


carry considerable amounts of information about individuals, a
procedure that eliminates all genetic variant information might
only be useful for pseudonymization, which describes methods
that reversibly reduce identifying information (GDPR recital
26)19.

The removal of genetic variant information in typical sequence
data needs to correctly handle multiple types of genetic variation
(SNPs, insertions, deletions, short tandem repeats, immune
haplotypes, etc.), present in different sequencing-based assays
(e.g., RNA-seq, scRNA-seq, DNA-seq, ATAC-seq) from various
sequencing platforms (Illumina, MGI, Pacific Biosciences, Oxford
Nanopore Technologies) and strategies (e.g., single- or paired-end
sequencing). At the same time, the remaining information such as
alignment positions, custom Sequence Alignment Map (SAM)
tags should be preserved as close to the original as possible, and
the strategy should be agnostic to the sequence alignment tool
used, as, for example, STAR20 and BWA21 report alignments
differently that may affect the data processing. In contrast to a
recent study17, we reasoned it would be possible to write a single,
efficient, versatile, and intuitive tool for the removal of genetic
information from genomics data that can easily be integrated into
existing infrastructures.

In brief, removal of genetic information from data can be
implemented for sequenced and aligned reads stored in the
ubiquitous BAM format by replacing donor genetic variation with
the sequence of the reference genome (Fig. 1a). This procedure
cannot be applied to the unmapped reads in the BAM file since
donor-specific genetic information is harder to identify with no
matching reference sequence. Unmapped reads are therefore
discarded. In the simplest case, a fully aligned sequence read
containing a SNP is replaced with the reference base (Fig. 1b). In
the case of insertions in the donor sequence, the non-reference
portion of the sequenced read is discarded and the remaining
sequence is extended by the length equal to the insertion while
keeping the 5ˈ mapping position intact (Fig. 1c). Conversely,
deletions are resolved by inserting the missing reference sequence
and removing the equal numbers of bases from the 3’ end of the
altered sequence read (Fig. 1d). Portions of the read that may
be soft- or hard-clipped are replaced by reference sequence, as the
non-matching sequence could stem not only from technical
artifacts such as adapters but also from genetic variation. In the
case of reads starting with clipping, for single-end sequencing
data the reference position of the read start is adjusted; however,
this is not possible for paired-end reads because it would
invalidate the mate-pair information (TLEN and PNEXT fields).
Instead for paired-end reads, the clipped sequence portion is
added to the end of the read (Fig. 1e). In RNA-seq data, spliced
alignments are common and reads can span several exon–exon
junctions. For these reads, both the 5’ mapping position and the
location of the splice junctions are preserved when scrubbing the
sequence data of insertion and deletion events (Fig. 1f, g). In
addition to the actual sequence field itself within the BAM file,
information on the presence of genetic variation in the donor
individual is stored in the CIGAR string and accessory fields.
Therefore, the CIGAR field and MD tag are consequently
corrected while removing each type of genetic variation (Fig. 1).
Genetic information could be inferred from additional accessory
fields, such as alignment score, mapping quality, and other
alignment information (e.g., number of hits NH). To solve this,
we update or remove these fields while leaving other auxiliary tags
(e.g., sample information, cell barcode, gene identity, or custom
flags) in place. While aiming to report data as close to the input
sequence data as possible, resolving indel variation results in out-
of-phase quality scores with respect to the base calls. The
resulting privacy preserving BAM file is fully compliant with the
SAM specifications22 (as confirmed by picard-tools validation;

see “Methods”) and thus smoothly compatible with existing
bioinformatics tools and pipelines. We implemented our strategy
for removing genetic variation in an open-source stand-alone
Python script, called BAMboozle, that only requires the input
BAM file and genome or transcriptome reference sequence used
for the alignment.

Importantly, the removal of SNPs and indels with BAMboozle
is not dependent upon user-supplied lists or databases of SNPs
and indels, rather all single-nucleotide or indel differences relative
to the reference sequence are replaced by the annotated reference
bases. Thus, complete removal of SNPs and indels with
BAMboozle is possible even though current databases of SNPs
and indels are incomplete. This procedure effectively removes all
types of genetic variant information, as sequenced reads aligning
to the genome are all reverted to reference sequence, and the
remaining sequenced reads that fail to align are discarded.

Validating the absence of genetic information in BAMboozled
sequence data. To illustrate the effectiveness of BAMboozle, we
analyzed a recently published 10× Genomics23 dataset of scRNA-seq
data generated from five equally abundant cell lines24 derived from
five different donors. After preprocessing the raw data with
zUMIs25, we summarized SNP coverage and assigned the 2937 high-
quality (≥66% exonic, ≥25,000 reads) cells to their donor of origin
using cellsnp-lite26 and vireo27. Cellsnp-lite and vireo can identify
sample-related genetic variant information with and without pre-
defined list of SNPs or indels. Here these tools were used to quantify
donor-related genetic variation present in the raw sequence data and
after BAMboozle processing. We projected the scRNA-seq data in
two dimensions using UMAP to visualize the overall structure of the
cellular transcriptomic data (Fig. 2a). Clearly, cells from each cell line
(and type) were distinctly grouped in the UMAP visualization
indicating cell line-specific gene expression patterns, and impor-
tantly, each of the cells from each main cluster could be assigned to a
single donor (colored in Fig. 2a) corresponding to the individual
from which the respective cell line was derived. Next, we processed
the BAM file with BAMboozle and repeated the donor assignment
using cellsnp-lite and vireo and the same settings. Importantly,
analysis of processed human sequence data failed to assign any cell
to a donor (i.e., the data lacks a donor structure) (Fig. 2b). The
transcriptome information, however, was completely intact enabling
a meaningful analysis of the gene expression changes between the
five studied cell lines. Finally, we investigated the number of reads in
the data that had donor-specific information, as quantified by
cellsnp-lite26 and 23% of raw reads contained donor-specific infor-
mation, whereas not a single read with donor-specific information
remained after BAMboozle processing (Fig. 2c). Therefore, the
complete lack of reads containing donor-related genetic variant
information validated the removal of genetic information from
human sequence data achieved with BAMboozle. As the cellsnp-lite
analysis is currently not computationally feasible in unguided
(whole-genome) mode for each individual cell, it was based on
approximately 7.4 million most common human SNPs (see
“Methods”). To confirm the absence of donor variation outside these
previously known positions, we tabulated the coverage on every
position of the genome over all cells using bcftools mpileup28 and
could confirm that the stored reads contained only reference
sequence. We note that the results presented here present one of
several possible state-of-the-art analyses and could be repeated with
other workflows for SNP and indel detection.

Similar results were achieved when analyzing scRNA-seq data
from human peripheral mononuclear cells (PBMCs) of four donors
mixed together with a HEK293T cell line (derived from a separate
donor) generated using the Smart-seq3 protocol15 (Fig. 2d–f). To
demonstrate that BAMboozle can also correctly remove genetic
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information from other data types, we next analyzed single-cell
ATAC-seq (scATAC-seq) data that was derived from a single donor
of PBMCs together with a lymphoblastoid cell line of a second
donor. While the donor structure was clearly present in the raw
BAM file (Fig. 2g), the BAMboozle procedure removed the ability to
identify donor structures (using cellsnp-lite), while maintaining the
cell-type separation (Fig. 2h). Reassuringly, processed sequence data
did not contain a single read with genetic variation (Fig. 2i), again
demonstrating the complete removal of SNPs and indels with
BAMboozle.

scRNA-seq data retain key utilities after removal of genetic
information. To demonstrate the utility of scRNA-seq data
processed with BAMboozle, we applied several typical down-
stream analyses to the data. First, we demonstrate that the
numbers of genes detected at different sequence read depths are
not affected by the removal procedure (Fig. S1a), since this
benchmarking is an important standard for method comparisons.
Thereafter, we demonstrate that the cellular expression levels

were accurately computed, as exemplified by the two distinct
clusters of B cells observed in the PBMC data (used above). The
average gene expression levels (mean read counts) were virtually
unchanged after removing genetic information (Fig. 3a, b).
Unsurprisingly, testing for differential gene expression levels (see
“Methods”) yielded identical results (Fig. 3c, d), providing con-
fidence that the BAMboozle procedure did not introduce
unwanted noise. Next, we performed RNA velocity, an important
analysis strategy that can capture and quantify the dynamic of
cellular gene expression changes29. Of note, in cases where
human scRNA-seq data are only available as count tables, RNA
velocity analysis is not possible, as it requires the summarization
of spliced, unspliced, and junction-spanning read counts from
BAM files. We show that data processed with BAMboozle retains
the same velocity information as the original data (Fig. 4), vali-
dating the scar-free removal of genetic information around and
on splice junctions.

Naturally, analysis tools that are used for inferring clonal
structures among cells are impossible to run on data lacking

Fig. 2 Processing of human scRNA-seq and scATAC-seq data with BAMboozle. a, b Uniform Manifold Approximation and Projection (UMAP) plot of
scRNA-seq data (10× Genomics) from five different cell lines (H2228, H1975, A549, H838 and HCC827; in total 2937 cells), colored according to donor
identity inferred from the a raw and b processed sequencing data. c Percentage of 10× Genomics scRNA-seq reads containing alternate allele information
at interrogated variant positions, for raw and processed data, respectively. All cells were combined and variants with sufficient coverage (n= 75,461) were
used. d, e UMAP plot of scRNA-seq data (Smart-seq3) generated from PBMCs (4 donors) and HEK293T cells (in total 3129 cells), colored according to
donor identity inferred from the d raw and e processed sequencing data. f Percentage of Smart-seq3 scRNA-seq reads containing alternate allele
information at interrogated variant positions, for raw and processed data, respectively. All cells were combined and variants with sufficient coverage
(n= 1,503,063) were used. g, h UMAP plot of scATAC-seq data (10× Genomics) generated from one PBMC donor and GM12787 cells (in total 1497
cells), colored according to donor identity inferred from the d raw and e processed sequencing data. i Percentage of 10× Genomics scATAC-seq reads
containing alternate allele information at interrogated variant positions, for raw and processed data, respectively. All cells were combined and variants with
sufficient coverage (n= 95,127) were used.
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genetic variation, since not a single informative read was present
in the data after applying BAMboozle. Finally, we analyze the
scRNA-seq dataset consisting of five distinct cell lines for the
presence of copy number variations (CNVs). As the inference of
CNVs using the inferCNV package (see “Methods”) does not
require additional sequence-derived information above the
already widely shared gene expression count tables, we could
infer CNVs even after applying BAMboozle (Fig. S1b).

Comparison of BAMboozle and ptools performance. Our
implementation of BAMboozle differs in several key aspects from
an alternative approach (called ptools) described by Gürsoy
et al.17. First, BAMboozle does not restrict the removal of genetic
information to the main chromosomes but rather takes all contigs
in the user-provided genome reference. Alternative chromosome
contigs and patches often contain highly polymorphic sites in the
human genome, such as additional haplotypes for immunology-
related genes such as major histocompatibility complex30. Sec-
ond, whereas ptools retains original reads that are unmapped or

aligned on contigs without a reference sequence, we discard this
information in BAMboozle to prevent leakage of clearly identifi-
able genetic sequence. Furthermore, we aim to minimize the
information loss during the data processing by keeping splice sites
and 5’mapping positions as intact as possible. We note that ptools
does not retain information accurately in reads containing two or
more spliced alignments (Fig. 5a), deletions in spliced alignments
(Fig. 5b), and insertions in spliced alignments (Fig. 5c). The
disruption of splice sites could potentially be used for identifying
reads where the removal procedure was applied, and the amount
of information leakage in such cases has not been systematically
investigated. Furthermore, we aimed to provide an efficient and
versatile implementation. To benchmark the strategies further, we
processed a dataset consisting of 2.4 billion PE150 reads (the data
used for Fig. 2d–f) with ptools and compared the performance
with the processing with BAMboozle. The run-time of BAMboozle
was 16.5-fold faster than ptools (5 h with BAMboozle vs. 80 h with
ptools, Fig. 5d) while using 9.9-fold less storage space on disk at
peak usage (Fig. 5e). Finally, since ptools did not remove genetic

Fig. 3 Accurate cellular transcriptomes in single-cell RNA-seq data after removal of genetic variants. a Scatter plot showing accurate gene expression
patterns in raw (y-axis) and BAMboozle-processed (x-axis) single-cell RNA-sequencing data. Data from 366 cells and 19,833 detected genes. b UMAP
generated from processed sequence data maintains cell-type and state granularity, highlighting the two B cell clusters. c Volcano plots showing adjusted p
values and log-fold changes (computed with limma-trend) in a comparison of B cell clusters 1 and 2, based on raw (left) and processed (right) sequence
data, respectively. Genes are colored according to significance. d Scatter plots showing correlation in gene-level fold-changes estimated with limma-trend
between B cell cluster 1 and 2.
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variation present in alternative chromosome contigs, we note that
81,326 genomic positions containing donor-specific genetic var-
iation remained after ptools processing (as compared to 0 such
positions with BAMboozle).

Discussion
The processing of personal data is protected through legislations,
including the Health Insurance Portability and Accountability
Act31 in the USA and GDPR in Europe18. These apply to all
aspects of processing of personal information, including the
collection, processing, and storing of personal data of the indi-
viduals who donated biological samples, irrespectively of gen-
erating sensitive human sequencing data. In this study, we
address the process of reverting human sequence data to pure
reference genome sequence with the goal of open data sharing.
All other aspects of data protection while processing personal
information require careful separate attention32. Importantly, this
type of anonymous data, i.e., data that lacks ability to trace the
data to a natural person, is no longer under data protection
legislation18,19 and can in principle be openly shared. To this end,
it is crucial that tools used for the processing of genomic infor-
mation work accurately in order to truly remove sensitive donor-
specifying genetic information before the community starts with
open data sharing. Importantly, the procedure we developed in
BAMboozle only removes genetic variant information. BAMboo-
zle processed transcriptome data still contain CNV and gene
expression levels, and their usefulness in identifying individuals,

particularly in combination with other data types, was not sys-
tematically investigated in this work. Nevertheless, BAMboozled
transcriptome data contain similar information as the summar-
ized data (e.g., sample- and gene-wise expression level count
tables) that is currently openly shared in the research community.
The widely shared summarized data at the read count level
should be evaluated for their information content regarding
donor identities, based on data alone and when taking donor
demographic data into account.

Large-scale sequencing of human genomes has provided
detailed information on the variation in the genetic sequences
among individuals within and across populations. For example,
the average human genome contains 4–5 million variant sites and
10–20,000 singletons (sites not found in other sequenced human
genomes). Out of these variant sites, 99.9% are SNPs and short
indels. The remaining variants are structural variations
(approximately 2000 per genome) in the form of large deletions,
CNVs, insertions of transposable elements, and nuclear mito-
chondrial variants33. Additionally, short-tandem repeats includ-
ing minisatellite and microsatellite repeats can be used to identify
individuals. With BAMboozle, we aim to remove genetic variation
present in the sequence data by altering all variant sites to become
the reference sequence that was defined by the researcher, typi-
cally standardized sequence assemblies such as GRCh38 curated
by the Genome Reference Consortium34. The strategy we
implemented correctly handles SNPs and indels and preserves the
context in which these variants were identified (e.g., in spliced
alignments). BAMboozle avoids making the altered sequences
detectable by minimizing inconsistencies or correction “scars” in
the processed BAM file, thus precluding a third person from
identifying which sequences was corrected and the indirect
inference of likely genetic variants. The BAMboozle strategy also
handles more technical aspects of aligned sequencing data such as
clipping and multimapped secondary alignments for spliced and
regular alignments. Importantly, BAMboozle removes genetic
variant information without relying on contemporary databases,
and the strategy developed automatically removes all major kinds
of genetic variation (SNPs, indels, repeat variants, microsatellite
repeats, genomic rearrangements, translocations). As an example,
insertions and deletions of all lengths are accurately eliminated
since shorter insertions or deletions present within aligned reads
are reverted to reference sequence (Fig. 1c), whereas reads with
longer insertions or deletions that fail to align to the reference
sequence are discarded.

Many areas of genomics rely on the genetic information
obtained from each human donor, including genome resequen-
cing and genome-wide association studies, and for these studies
BAMboozle has no utility. However, the sharing of human
sequence data reverted to reference genome sequence is highly
relevant for many other areas of genomics, e.g., functional
genomics. We envision that the exploration and enumeration of
the cell types of human tissues would be greatly enhanced by
BAMboozle, since it would facilitate integrative analysis of mul-
tiple datasets in manners compatible with batch corrections and
integration strategies35 to combat the effect of donor variation
onto gene expression patterns. Benchmarking studies across
scRNA-seq protocols, individuals, and conditions would also
benefit from open data availability, for instance, by quantifying
gene expression estimates from different sequence depths14,36. It
is also worth noting that certain other aspects of functional
genomics data are removed by this procedure, e.g., the ability to
study allele-specific transcription including X-chromosome
inactivation37, reconstruct TCR and BCR repertoires, or the
ability to infer clonal relationship between cells in cancer. Finally,
we envision implementing an allow-list for one or a limited set of
critical genomic positions in a dataset, so that these positions

BAMboozle output data

Raw sequence dataa

b

Fig. 4 Genotype-free RNA-seq data maintains splicing kinetics
information. a RNA velocity inferred from raw single-cell RNA-sequence
data, with estimated cellular flows overlaid on top of the UMAP
visualization (b). b RNA velocity analysis of single-cell RNA-sequencing
data after removal of genetic variation with BAMboozle show similar cell-
state flows as in the analysis run on raw sequence data (a).
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have their genetic information intact, whereas all other genetic
variations are removed. The number of variant positions to allow
would require, however, in-depth analysis and calculation of
privacy risks to ensure that the included genetic variation does
not enable re-identification of the natural person.

The strategy we developed and implemented in BAMboozle is
well aligned with the GDPR’s evaluation of reasonable factors
concerning the available and novel technology as well as the time
and expertize required to attempt singling out individuals.
However, the legal and ethical contexts of processing and sharing
human sequence data are complex topics with differences across
countries and legislations. Thus, researchers should make

informed decisions based on their local regulations and taking
new developments in privacy research into account. Finally, the
community would benefit from investigating the possibility of
identifying sensitive, donor-identifying, genetic information from
pure reference sequence count data. However, even if donor-
specific information is detectable in gene expression data, it is
currently not feasible to infer genetic information from expres-
sion data in humans, nor obvious that anything additional could
be learned in addition to the data used for the search itself.

We here demonstrate how to achieve efficient and accurate
removal of genetic information of human sequencing read data.
The generation of such sequence data should re-enable open
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denoted by gray lines. a Alignment covering several splice junctions is correctly reported by BAMboozle while ptools reports only the first splice site. b Spliced
alignment with deletion. Information loss in BAMboozle is avoided by keeping 5’ mapping position and splice junction intact. c Insertion in a spliced alignment is
resolved while keeping splice junction intact in BAMboozle. d, e Benchmarking of ptools and BAMboozle on 2.42 billion PE150 reads shows that run time for
BAMboozle is d 16.5-fold faster (4 h 57min vs 81 h 31min) and e consumes 9.9-fold less storage space (378.5 GB peak vs 3741.1 GB peak).
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sharing of sequence data in studies that do not require the genetic
variation. This will, for example, be important for large publicly
funded landmark projects, such as the Human Cell Atlas38. Ide-
ally, controlled-access databases (e.g., dbGaP9 or EGA10) could
also directly offer free download of scrubbed data as a comple-
ment to the full genetic sequence data under controlled access.
Finally, our versatile strategy for reliably reverting sequence data
to the reference sequence is implemented into a user-friendly,
efficient, and freely available tool present on GitHub (https://
github.com/sandberg-lab/dataprivacy) and available from the
PyPI repository (can be installed with: pip install BAMboozle). It is
our hope that BAMboozle will facilitate data sharing of human
sequence data for improved transparency and innovation in the
life sciences.

Methods
Data sources. Raw data in fastq format for the 10× Genomics v2 scRNA-seq
experiment of five human cell lines (H2228, H1975, A549, H838, and HCC827)
were obtained from the European Nucleotide Archive (accession: SRR8606521).
Raw fastq data from scRNA-seq data generated using the Smart-seq3 protocol from
PBMC and HEK cells were obtained from ArrayExpress (accession: E-MTAB-
8735). scATAC-seq data for human PBMCs and GM12878 cells were downloaded
as preprocessed (CellRangerATAC v 1.2.0).bam files from the 10× Genomics
website (https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/
atac_hgmm_1k_nextgem; https://support.10xgenomics.com/single-cell-atac/
datasets/1.2.0/atac_pbmc_1k_nextgem) and concatenated for the remainder of the
analysis.

scRNA-seq data processing. Raw fastq files were processed using zUMIs25 (v
2.9.4 f), which relied on mapping of the reads using STAR20 (v 2.5.4b) to the
human genome (hg38) and quantification using Ensembl gene annotations
(GRCh38.95). To generate UMAP plots, count tables were analyzed in Seurat39

(v.3.1.5) following the standard workflow with default settings. In the case of
Smart-seq3 data, the UMAP coordinates as previously published were used15.

BAMboozle workflow. The data removal procedure involves modification of the
observed read sequence to the reference genome sequence and the clearing of
auxiliary tags.

Overview of considered cases and the associated strategy that is automatically
being applied within the BAMboozle program:

1. SNPs: Mismatches to the reference (either explicitly X coded in the CIGAR
value or within M matched segments) are replaced by the reference base.

2. Insertions (CIGAR I): The read sequence is extended by the length equal to
the insertion, while keeping the 5’ mapping position constant.

3. Deletions (CIGAR D): The missing reference sequence is inserted into the
read, while removing an equal number of bases from the 3’ end.

4. Clipping: Soft or hard clipped bases (CIGAR: S/H) are replaced by reference
sequence of matching length. If reads start with clipped bases in single-end
data, the reference position of the read start is adjusted, which is not possible
for paired-end reads to conserve correct mate-pair information in the TLEN
and PNEXT fields. Thus, for paired-end reads, the clipped sequence length
is added at the end of the read.

5. Splicing: Splicing is observed and splice sites are conserved even in the case
of deletions and insertions. In case of a deletion leading to a shift of length
that is longer than the mapped sequence length in the last exon, this splice
event is removed.

6. Multimapping: In default behavior, only primary alignments are emitted.
The user can choose to keep secondary but we note that full protection from
inference of genotypes cannot be guaranteed.

7. Unmapped reads: Unmapped reads cannot be cleared of genetic variation
and are discarded in default settings.

As donor-related information could also be inferred from standard bam fields
and auxiliary tags, the following changes are made:

1. CIGAR value is matched to the reference genome read sequence (Example:
100 M).

2. MD tags coding mismatches or deleted information are updated to the
error-free sequence, if present (Example: 100).

3. NM and nM tags (edit distance to the reference) are cleared by replacement
with 0.

4. Tags containing information on the alignment are discarded (MC, XN, XM,
XO, XG).
In --strict mode, the following tags are also changed:

5. Mapping quality is set to maximum/unavailable (255).
6. AS and MQ (alignment score/mapping quality) are set to read length.

7. NH (number of hits in the reference) is set to 1.
8. Discarding of the following tags: HI, IH, H1, H2, OA, OC, OP, OQ, SA, SM,

XA, XS.

Genotyping and donor inference. Genotype-informative base coverage was
summarized per cell over 7.4 million common variants (AF > 5% in the 1000
genomes project phase 3) with cellsnp-lite26 (v 1.2.0) using --UMItag None --
minCOUNT 10 settings. The resulting sparse VCF file was loaded into vireo27 (v
0.4.2) and donor deconvolution performed using the appropriate --nDonor flag
(n= 2 for scATAC, n= 5 for 10× scRNA-seq, and n= 6 for Smart-seq3).

Validation BAM specification. The output of BAMboozle from the Smart-seq3
scRNA-seq dataset was validated for compliance with the SAM specification22

using the picard-tools (http://broadinstitute.github.io/picard) ValidateSamFile
command with the following exceptions: --IGNORE MATE_NOT_FOUND,
RECORD_MISSING_READ_GROUP, MISSING_READ_GROUP. No errors or
warnings were observed.

Comparison to ptools. The latest version of ptools available at the time of this
manuscript (git commit # a684509 from 23 Nov 2020) was downloaded from
GitHub https://github.com/ENCODE-DCC/ptools. We applied the “genome”
workflow as all RNA-seq and ATAC-seq data were aligned to the human reference
genome as described above. The following changes were applied to the ptools code
in order to avoid errors during the processing:

1. makepBAM_genome.sh: lines 13–14 were changed to avoid requirement of
global installation of ptools script in PATH:
13: python3 $(dirname $(readlink -f $0))/getSeq_genome_wN.py “${refer-
ence_fasta}” header.txt withN.sam | samtools view -h -bS - > withN.p.bam
14: python3 $(dirname $(readlink -f $0))/getSeq_genome_woN.py “${refer-
ence_fasta}” header.txt withoutN.sam | samtools view -h -bS - >
withoutN.p.bam

2. getSeq_genome_wN.py and getSeq_genome_woN.py: lines 56/57, respec-
tively, were changed to apply to Ensembl-formatted chromosome names
used in this work (instead of UCSC nomenclature only). We note that the
default ptools implementation would emit all data using Ensembl
chromosome names unchanged.
57: if chrom in [‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘10’, ‘11’, ‘12’, ‘13’, ‘14’, ‘15’,
‘16’, ‘17’, ‘18’, ‘19’, ‘20’, ‘21’, ‘22’, ‘X’, ‘MT’, ‘Y’]:

3. getSeq_genome_wN.py: line 78 moved before line 56, to avoid an error
while writing the unchanged sequences that ptools does not discard.
57: nColpbam = len(pbam)

4. getSeq_genome_wN.py and getSeq_genome_woN.py: lines 89–90/53–54,
respectively: misformatted tab characters were corrected to avoid indenta-
tion errors.

Finally, ptools was run using the following command: “./ptools/genome/
makepBAM_genome.sh
Smartseq3.filtered.Aligned.GeneTagged.UBcorrected.sorted.bam /home/chrisz/
resources/genomes/Human/hg38.primary_assembly.fa”

Checks for residual donor-related variation were performed using the bcftools
(v1.7) mpileup command. The resulting compressed VCF files were filtered for the
presence of alternate alleles with read support using bcftools view --min-alleles 3.

Differential expression analysis. Read count tables for introns and exons derived
from the original data and BAMboozle output data were used, and we selected cells
assigned to the two known B cell clusters. Genes expressed above an average of
≥0.1 counts across all cells were kept for differential expression. Next, count tables
were normalized using scran40 (v1.18.7) and differential expression was tested for
using limma-trend41 (v3.46.0). Raw p values were corrected using the
Benjamini–Hochberg method.

Inference of CNVs. UMI count tables from the original and BAMboozle-processed
data were used as input to the inferCNV package (v1.7.2; https://github.com/
broadinstitute/inferCNV). CNVs were inferred using the recommended gene
detection of 0.1 and using one arbitrarily chosen cell line cluster as the reference
population, with all other settings kept at default values.

RNA velocity. Count matrices for spliced and unspliced reads were processed from
original and BAMboozle-processed bam files using the velocyto python command
line tool (v0.17.15)29. Recommended settings for Smart-seq data were used by
running in velocyto run --without-umi --multimap mode. The resulting loom files
were then further analyzed using the scVelo42 implementation for RNA velocity
(v.0.2.3), following the recommended default settings to perform gene selection,
normalization, moment estimation, and estimation of RNA velocities. RNA velo-
cities were overlaid onto UMAP representations using the stream embedding
function.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The 10× Genomics v2 single-cell RNA sequencing experiment of five human cell lines was
obtained from the European Nucleotide Archive (accession: SRR8606521). scRNA-seq data
generated using the Smart-seq3 protocol were obtained from ArrayExpress (accession: E-
MTAB-8735). Single-cell ATAC-seq data for human PBMCs and GM12878 cells was
downloaded from the 10× Genomics website (https://support.10xgenomics.com/single-cell-
atac/datasets/1.2.0/atac_hgmm_1k_nextgem; https://support.10xgenomics.com/single-cell-
atac/datasets/1.2.0/atac_pbmc_1k_nextgem).

Code availability
The python code has been deposited in GitHub (https://github.com/sandberg-lab/
dataprivacy) and Zenodo43 and can easily be installed through PyPI (https://pypi.org/
project/BAMboozle).
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